Influence of Brazilian metakaolins in alkali-activated cements with a ternary blend of regional blast furnace slag and rice husk ash

Authors

DOI:

https://doi.org/10.19123/REixo.v13n3.15

Keywords:

Alkali-Activated Cement, rice husk ash, metakaolin

Abstract

Alkali-activated cements (AAC) are environmentally friendly products developed from raw materials containing calcium oxide (CaO), such as blast furnace slag, silica (SiO₂), such as fly ash, and materials composed of alumina (Al₂O₃), such as metakaolin. The addition of these compounds in AAC aims to improve its physicochemical properties while reducing the environmental impact of the cement industry. Thus, the objective of this study is to analyze the impact of two Brazilian metakaolins with distinct characteristics in the production of alkali-activated cements, using ternary blends that include regional blast furnace slag and rice husk ash. For this purpose, AAC pastes were produced with different proportions of slag, rice husk ash, and metakaolin (MKA and MKB), maintaining a SiO₂/Al₂O₃ ratio of 4.4. Tests were conducted for compressive strength at 7, 28, and 90 days of curing, isothermal calorimetry over 7 days, and microstructural analyses at 28 days. The results indicated that mixtures containing MKB showed better strengths, reaching 40 MPa at 28 days. However, it was found that despite the different degrees of amorphism and chemical compositions between the two MKs, the results were mainly influenced by the presence of calcium in the slag, promoting greater formation of hydrated products.

Author Biographies

  • Andreza Frare, Universidade Federal do Paraná - PR

    Doutoranda no Programa de Pós-graduação em Construção Civil pela Universidade Federal do Paraná - PR. Professora EBTT - IFSC.

  • Caroline Angulski da Luz, Universidade Tecnológica Federal do Paraná – PR

    Professora doutora no Programa de pós-graduação em Engenharia Civil UTFPR - Pato Branco.

  • Marcelo Henrique Farias de Medeiros, Universidade Federal do Paraná (UFPR)

    Professor Doutor do Programa de pós-graduação em Construção Civil na Universidade Federal do Paraná (UFPR).

References

ALONSO, S.; PALOMO, A. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Materials Letters, v. 47, 55–62 p., 2001.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12653: Materiais pozolânicos — Requisitos. Rio de Janeiro, 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15894-1: Metacaulim para uso com cimento Portland em concreto, argamassa e pasta - Parte 1: Requisitos. Rio de Janeiro, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5752: Materiais pozolânicos — Determinação do índice de desempenho com cimento Portland aos 28 dias. Rio de Janeiro, 2014.

AYDIN, S.; BARADAN, B. Effect of activator type and content on properties of alkali-activated slag mortars. Composites: Part B. 166–172. 2014.

BARATA, M. S.; ANGÉLICA, R. S. Caracterização dos Resíduos cauliníticos das indústrias de mineração de caulim da Amazônia como matéria-prima para a produção de pozolanas de alta reatividade. Cerâmica, v. 58, n. 345, p. 36-42, 2012.

BELTRAME et al. Alkali activated cement made from blast furnace slag generated by charcoal: resistance to attack by sodium and magnesium sulfates. Construction and Building Materials. Volume 238, 30, 2020.

BEN HAHA, M. et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3. Cement and Concrete Research, v. 42, ed. 1, 74–83 p., 2012.

BEN HAHA, M. et al. Influence of slag chemistry on the hy-dration of alkali-actived blast-furnace slag - Part I: Effect of MgO. Cement and Concrete Research, v. 41, n. 1, p. 955-963, 2011.

CADORE et al. An investigation of the carbonation of alkaline activated cement made from blast furnace slag generated by charcoal. Construction and Building Materials. Volume 226, 30, Pages 117-122. 2019.

DINAKAR, P. et al. Effect of metakaolin content on the properties of high strength concrete, Int. J. Concr. Str. Mater. 7 (3) 215–223. 2013.

DUXON, P. et al. Geopolymer technology: the current state of the art J Mater Sci, 42, pp. 2917-2933. 2007.

DUXSON, P. et al. Geopolymer Technology: the Current State of the Art. Advances In Geopolymer Science & Technology. Springer Science+Business. 2006.

EL-DIADAMONY, H. A. et al. Hydration and characteristics of metakaolin pozzolanic cement pastes. Housing and Building National Research Center HBRC Journal. 14, 150-158. 2018.

ELIE et al. Dependence of the geopolymerization process and end-products to the nature of solid precursors: challenge of the sustainability. Journal of Cleaner Production. Volume 278, 1, 2021.

FILIPPIS et al. Relation between activator ratio, hydration products and mechanical properties of alkali-activated slag. Construction and Building Materials. Volume 266, Part A, 10, 2021.

FRARE, A. Uso da cinza de casca de arroz em cimentos álcali-ativados como fonte alternativa de sílica. 018. 69f. Dissertação. Programa de Pós-Graduação em Engenharia Civil, Universidade Tecnológica Federal do Paraná. Pato Branco, 2018.

FRARE, A.; ANGULSKI DA LUZ, C. Cimentos álcali ativados: efeito da cura térmica no desenvolvimento da resistência mecânica. Matéria (Rio J.). vol.25, n.1, 2020.

FRÍAS, M.; CABRERA, J. Pore size distribution and degree of hydration of MK-cement pastes, Cem. Concr. Res. 30, 561–569. 2000.

GAMEIRO, A. L. et al. Hydration products of lime–metakaolin pastes at ambient temperature with ageing. Thermochimica Acta, v. 535, n. 0, p. 36-41, 2012a.

GAMEIRO, A. L. et al. Lime-metakaolin hydration products: a microscopy analysis. Mater. Tehnol., v. 46, n. 2, p. 145-148, 2012b.

GRACIOLI, B. et al. Considerations on the mechanical behavior and hydration process supersulfated cement (CSS) formulated with phosphogypsum. Revista Matéria ISSN 1517-7076 artigo e11775, p. vol.22, n.1, e11775, 2017.

HEWLETT LEA’s, P. C. Chemistry of Cement and Concrete, Elsevier, Butterworth-Heinmann, 2004.

JUENGER, M. C. G. et al. Advances in Alternative Cementitious Bindesrs. Cemente and Concrete Research, p. v.41, 1232-1243p., 2011.

KOMNISTSAS, K.; ZAHARAKI, D. Geopolymerisation: a review and prospects for the minerals industry. Miner Eng, 20, pp. 1261-1277. 2007.

KUMAR et al. Effect of mechanically activated fly ash on the properties of geopolymer cement J. Davidovits (Ed.), Proceedings of the World Congress Geopolymer, Saint Quetin. pp. 113-116. 2005.

LANGARO, E. A. et al. The influence of chemical composition and. Revista Matéria ISSN 1517-7076 artigo e11792. p. vol. 22 n.01, 2017.

LI, C. et al. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res, 40, pp. 1341-1349. 2010.

LOTHENBACH, B. et al. Supplementary Cementitious Materials. Cement and Concrete Research, 41, 1244-1256, 2011.

MEHTA, P. K.; MONTEIRO, P. J. M. Concrete: microstructure, properties, and materials. 3rd ed. New York. London: McGraw-Hill, 2006.

MONTEIRO et al. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res, 2010 (40), pp. 189-196. 2010.

MOSTAFA, N. Y.; BROW, P. W. Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry. Thermochimica Acta. Volume 435, Issue 2, Pages 162-167. 2005.

MOUIN, G. et al. CO2 emission reduction in the cement industry by using a solar calciner. Renewable Energy, 145, 1578-1596, 2020.

NASIR et al. Magnesium sulfate resistance of alkali/slag activated silico-manganese fume-based composites. Construction and Building Materials. Volume 265, 30 December 2020.

NATH, S. K.; KUMAR, S. Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr Build Mater, 38, pp. 924-930. 2013.

OLIVEIRA, C. Avaliação microestrutural e comportamento físico e mecânico de concretos de alto desempenho produzidos com metacaulim. Tese (Doutorado em Engenharia). Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte. 196f. 2007.

PACHECO-TORGAL, F. et al. Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue? Constr Build Mater, 30, pp. 400-405. 2012.

PAL, S. C.; MUKHERJEE, A.; PATHAK, S. R. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research , v. 33, p. 1481-1486, 2003.

PAVEL, R. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater, 24, pp. 1176-1183. 2010.

PELISSER et al. Compressive strength, modulus of elasticity and hardness of geopolymeric cement synthetized from non-calcined natural kaolin. Journal of Cleaner Production. Volume 280, Part 1, 20, 2021.

PINHEIRO et al. Application of the response surface method to optimize alkali acti-vated cements based on low-reactivity ladle furnace slag. Construction and Building Materials. Volume 264, 20, 2020.

PROVIS, J. L. et al. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chemistry of Materials, v. 17, p. 3075-3085, 2005.

RAMASAMY, S. et al. Recent dissertations on kaolin based geopolymer materials. Rev. Adv. Mater. Sci.. 42: p. 83-91. 2015.

RASHAD, A. Alkali-activated metakaolin: a short guide for civil Engineer – an overview Constr Build Mater, 41, pp. 751-765. 2013.

RASHAD, A. Metakaolin as cementitious material: History, scours, production and composition – A comprehensive overview. Construction and Building Materials. Volume 41, Pages 303-318. 2013.

SHI, C. et al. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, v. 41, ed. 7, 750–763 p., 2011.

SIDDIQUE, R.; KHAN, M. I. Supplementary cementing materials. Berlin: Springer Berlin Heidelberg, 2011.

SUKMAK, P. et al. Strength development in clay–fly ash geopolymer. Constr Build Mater, 40, pp. 566-574. 2013.

TCHAKOUTÉ, H. K. et al. The effects of synthesized calcium phosphate compounds on the mechanical and microstructural properties of metakaolin-based geopolymer cements. Construction and Building Materials. Volume 163, 28. Pages 776-79228. 2018.

TEODORO, R. et al. Influence of Different Types of Metakaolin on Compressive Strength and Chloride Migration of Concrete. XV International Conference on Durability of Building Materials and Components. DBMC 2020. Barcelona – Spain. 2020.

TUYAN et al. Development of sustainable alkali-activated slag grout for preplaced aggregate concrete. Journal of Cleaner Production. Volume 277, 20 December 2020.

VAN JAARSVELD, J. G. S.; VAN DEVENTER, J. S. J. The characterisation of source materials in fly ash-based geopolymers Mater. Lett., 57 (7) pp. 1272-1280. 2003.

VARGAS, A.S. Cimento Ecológico: Um Compromisso da Indústria da Construção Civil para com as Gerações Futuras. Tese de Doutorado, Universidade Federal do Rio Grande do Sul. Porto Alegre, 2006.

WANG, L. et al. Hydration, mechanical property and C-S-H structure of early-strength low-heat cement-based materials. Material Letters, Wuhan, China, v. 217, p.151- 154, 2018.

XUE et al. Mecanismos de hidratação e durabilidade de cimentos alcalinos hí-bridos (hacs): uma revisão. Construção e materiais de construção. Volume 266, Parte A, 10 de janeiro de 2021.

YAN et al. Mechanical performance and reaction mechanism of copper slag activated with sodium silicate or sodium hydroxide. Construction and Building Materials.Volume 266, Part A, 10 January 2021.

ZIVICA, S. et al. Properties of metakaolin geopolymer hardened paste prepared by high-pressure compaction. Constr Build Mater, 25, pp. 2206-2213. 2011.

Published

2024-12-26

Data Availability Statement

Dados disponibilizados.

Issue

Section

Artigos

Categories

How to Cite

Influence of Brazilian metakaolins in alkali-activated cements with a ternary blend of regional blast furnace slag and rice husk ash. (2024). Revista Eixo, 13(3), 141-152. https://doi.org/10.19123/REixo.v13n3.15

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

You may also start an advanced similarity search for this article.